
 DM Script Handbook - © B.Schaffer How to read and write text files

 last update 30/03/11 pre-print version for personal use only page 13

 How to read and write text files
One of the most often needed ways to import/export data is the plain text file. This tutorial shows different ways of creating,
reading and writing in plain text files, and also how such files can be navigated.

saving; opening; files; text; CreateFileForWriting(); OpenFileForReading(); OpenFileForWriting(); WriteFile();
ReadFile(); OpenFileForReadingAndWriting(); ReadFileLine(); CloseFile(); GetFileSize(); StreamGetSize();
StreamSetSize(); StreamSetPos(); StreamGetPos(); NewStreamFromFileReference(); StreamWriteAsText();
StreamReadAsText(); StreamReadTextLine();

There are different possibilities to read from or write to a text file.

Variant A - Accessing text files by low-level API commands
The first, and maybe more intuitive way is to use read and write commands which are similar to the results()
command but access a file instead of the results window. In order to do so, a file has first to be created or opened by
one of the following commands CreateFileForWriting(), OpenFileForReading(), OpenFileForWriting(),
OpenFileForReadingAndWriting(). As the name of the commands suggests, a file can be opened for either just reading,
or for just writing, or to allow both at the same time. The only parameter of these commands is the path to the file,
which can either be absolute or relative. When successfully executed, these commands return a number further called
fileID. As long as file is opened, this fileID number refers to the file and is used to address the file in other commands.
It is important to note that an opened file stays open even if the script is finished. This is also valid, if the script breaks
during execution. Opened files can not be accessed by any other process, and it is thus necessary to make sure that
each opened file is closed within the script, using the CloseFile() command. (All opened files are closed automatically
when DigitalMicrograph is closed.)

The first example script demonstrates how a text file is created at a selected position. Some text is written using the
WriteFile() command. Each new text is appended automatically at the end of the file.

String filename, text
Number fileID
If (!SaveAsDialog("Save text file as", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
Result("\n Selected file path:"+filename)
fileID = CreateFileForWriting(filename)
text = "Some typical text string with TABULATOR \t and LINEBREAKS \n as used in DigitalMicrograph"
WriteFile(fileID, "Writing some text at the beginning.")
WriteFile(fileID, "Text is continued without LINEBREAK! Add a LINEBREAK:\n")
WriteFile(fileID, "The command WriteFile() is used as the command Result() and allows a mixture of")
WriteFile(fileID, "direct strings,\n number variables:\n" + fileID + ",\n or string variables:\n" + text)
CloseFile(fileID)

In the next example, we open the same file and read the text and print it into the result window. Please note the NULL
in the command OpenDialog() which is needed in this syntax of the command allowing a modified dialog text and a
default value. First, we make use of the ReadFile() command which reads a specified number of characters into a
string. Note that a LINEBREAK or a TABULATOR is also considered one character. Note further, that the command
does not check the size of the file. If more characters should be read than are present in the file, the script will crash
with an error message (and the file stays open!).

String filename, text
Number fileID, nr
If (!OpenDialog(NULL, "Reading from text file", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
Result("\n Selected file path:"+filename)
If (!GetNumber("How many characters should be read?", 2 , nr)) Exit(0)
fileID = OpenFileForReading(filename)
text = ReadFile(fileID, nr)
Result("\n Reading " + nr + " characters:\n" + text)
If (!GetNumber("How many characters should now be read?", 2 , nr)) Exit(0)
text = ReadFile(fileID, nr)
Result("\n Reading the next " + nr + " characters:\n" + text)
CloseFile(fileID)

The following example uses the ReadFileLine() command which reads a whole string until a LINEBREAK character
or the ENDOFFILE is reached. The function returns 1 on success and 0 on failure (e.g. no more lines), which allows
it to be used in a while loop and avoids errors on exceeding the file size. Note that the LINEBREAK character is part
of the returned string.

String filename, text
Number fileID
If (!OpenDialog(NULL, "Reading from text file", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)

 DM Script Handbook - © B.Schaffer How to read and write text files

 last update 30/03/11 pre-print version for personal use only page 14

fileID = OpenFileForReading(filename)
While(ReadFileLine(fileID, text)) Result("\n next line ["+text+"]")
CloseFile(fileID)

We have now examples for creating a text file and reading it. The next example shows how a text file can be opened
for appending some text. Whenever a text file is opened, the “pointer” or “cursor“ is at the start of the file. Thus,
each WriteFile() command would overwrite existing data. It is necessary to first move the pointer by reading from the
file. The command GetFileSize() returns the size of a file in bytes. As in pure text files each character is stored by one
byte-sized number (0-255), the file size in bytes is at the same time the number of characters in the file. Thus, reading
‘file size’ characters will put the file pointer to the end of the file, where we then can write the new text. Note, that we
need to open the filer for both reading and writing in this case.

String filename, text
Number fileID, nr
If (!OpenDialog(NULL, "Appending to text file", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
fileID = OpenFileForReadingAndWriting(filename)
Result("\n File size (bytes): " + fileID.GetFileSize())
ReadFile(fileID, fileID.GetFileSize())
WriteFile(fileID, "\nThis text is added!")
CloseFile(fileID)

Variant B - Accessing text files by streaming commands
Besides the read and write commands demonstrated so far, there is a more versatile method of dealing with text files:
streaming. Streaming text files works similar to streaming binary files as described in the tutorial on binary data
import and export (see page 11). The main advantage of a streamed text file is that the pointer can be easily placed at
any position of the text file, and that the file is automatically closed if the stream runs ‘out of scope’.
The following script opens a text file and creates a stream from it by using NewStreamFromFileReference(). The
second parameter defines, if the file should be automatically closed if the stream runs out of scope. Next, the script
reads its size by StreamGetSize(). The pointer is then placed at the last position by StreamSetPos(). The second
parameter gives an offset (in bytes) to a reference point defined by the first parameter:

reference point
0 start of file
1 current cursor position
2 end of file

With the cursor being at the end position, some text is written with the command StreamWriteAsText(). Besides the
fileID and the text, a number parameter defines the text encoding:

encoding explanation
0 local Local character set. Determined by settings in Windows.
1 western DigitalMicrograph (US) character set.
2 unicode Unicode character set.

After writing the text, the new size of the stream is given before closing the file.
Object file_stream
String filename, text
Number fileID
If (!OpenDialog(NULL, "Appending to text file", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
fileID = OpenFileForReadingAndWriting(filename)
file_stream = NewStreamFromFileReference(fileID, 1)
Result("\n size of file before adding:" + file_stream.StreamGetSize())
file_stream.StreamSetPos(2,0)
file_stream.StreamWriteAsText(0, "\n Adding some new text by streaming.\nNew line.")
Result("\n size of file after adding:" + file_stream.StreamGetSize())
CloseFile(fileID)

In the next example, navigating, reading and writing within a stream is all used together to find and replace all
decimal points (.) in a text file by commas (,). This can for example be useful when working with German language
programs where decimals are expressed by commas instead of points. The script loops through the file by comparing
the current pointer position – gained with the command StreamGetPos() – with the size of the file. StreamReadAsText()
is used to read a defined numbers of characters (one in the example) of given encoding into a string variable. If a
decimal point is found, StreamSetPos() is used to set the cursor back by one character, so that the StreamWriteAsText()
command overwrites the located decimal point with the comma. After replacing all points with commas, the pointer is
placed at the beginning of the file and the file is read line-by-line using the command StreamReadTextLine() with local

 DM Script Handbook - © B.Schaffer How to read and write text files

 last update 30/03/11 pre-print version for personal use only page 15

encoding. The command returns 1 on success and 0 on failure. Thus, it can be used within a while loop. Once the file
ends, the command can no longer read a line and returns 0, which ends the while loop. The same is repeated with a
variant of the StreamReadTextLine() command offering an additional parameter (2nd position) which determines
whether or not the final LINEBREAK at the end of a read line is truncated.

Object file_stream
String filename, text
Number fileID, streamsize
If (!OpenDialog(NULL, "Replace . by ,", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
fileID = OpenFileForReadingAndWriting(filename)
file_stream = NewStreamFromFileReference(fileID, 1)
streamsize = file_stream.StreamGetSize()
While(file_stream.StreamGetPos() < streamsize)
 {
 text = file_stream.StreamReadAsText(0, 1)
 If (text == ".")
 {
 file_stream.StreamSetPos(1, -1)
 file_stream.StreamWriteAsText(0, ",")
 }
 }
file_stream.StreamSetPos(0,0)
Result("\n Change filed (with LINEBREAKS):\n")
While(file_stream.StreamReadTextLine(0,text)) Result(text)
file_stream.StreamSetPos(0,0)
Result("\n Change filed (without LINEBREAKS):\n")
While(file_stream.StreamReadTextLine(0,0,text)) Result(text)
CloseFile(fileID)

In the last part of this tutorial we deal with inserting and removing text from a text file. In a standard stream you can
move your pointer and change the information at the indicated position. However, you can not clip or insert data
directly, as this changes the position of the data behind the position. Or, in another point of view, all data at positions
behind the current one is changed, and the file is increased/decreased in size. Thus, inserting or removing text in the
middle of a text file involved rewriting all of the data to the end and can be quite time consuming and inefficient.
Especially, if many such changes have to be made. In such a case it can be more efficient to work with two different
text files, were the new file is built by copying parts of the old file plus additional text.

The following function will directly insert a text at a given position in a file. Note that this time the stream is created
without closing the file automatically on running ‘out of scope’!

/* This function inserts a text at given position in a file. The file has to be open for reading/writing. */
Void TXTFile_Insert(Number fileID, Number pos, String text)
 {
 Object file_stream
 String copystring
 Number filesize
 file_stream = NewStreamFromFileReference(fileID, 0) // Note: File not automatically closed!
 filesize = file_stream.StreamGetSize()
 If (pos > filesize) Return
 If (pos < 0) Return
 file_stream.StreamSetPos(0 , pos) // jump to position
 copystring = file_stream.StreamReadAsText(0, filesize-pos) // copy rest of file
 file_stream.StreamSetPos(0 , pos) // jump to position
 file_stream.StreamWriteAsText(0 , text) // inset the text
 file_stream.StreamWriteAsText(0 , copystring) // paste rest of file
 Return
 }

String filename, text
Number fileID, pos
If (!OpenDialog(NULL, "Inserting in a text file", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
fileID = OpenFileForReadingAndWriting(filename)
while (GetString("Enter new text", "-INSERTED-", text))
 {
 If (!GetNumber("Insert at position [0-" + fileID.GetFileSize() + "]", 0, pos)) Break
 TXTFile_Insert(fileID, pos, text)
 }
CloseFile(fileID)

 DM Script Handbook - © B.Schaffer How to read and write text files

 last update 30/03/11 pre-print version for personal use only page 16

The function below removes a text of given length from a text file. After cutting the text out, the command
StreamSetSize() is used to define the new size of the file.

/* This function removes a text of given length and position. The file has to be open for reading/writing. */
Void TXTFile_Remove(Number fileID, Number pos, Number amount)
 {
 Object file_stream
 String copystring
 Number filesize
 file_stream = NewStreamFromFileReference(fileID, 0) // Note: File not automatically closed!
 filesize = file_stream.StreamGetSize()
 If ((pos+amount) > filesize) Return
 If (pos < 0) Return
 file_stream.StreamSetPos(0 , pos+amount) // jump to position
 copystring = file_stream.StreamReadAsText(0, filesize-pos-amount) // copy rest of file
 file_stream.StreamSetPos(0 , pos) // jump to position
 file_stream.StreamWriteAsText(0 , copystring) // paste rest of file
 file_stream.StreamSetSize(file_stream.StreamGetPos()) // truncate the file at the current position
 Return
 }

String filename
Number fileID, pos, amount
If (!OpenDialog(NULL, "Deleting from a text file", GetApplicationDirectory(2,0) + "myText.txt", filename)) Exit(0)
fileID = OpenFileForReadingAndWriting(filename)
If (!GetNumber("Cut at position [0-" + fileID.GetFileSize() + "]", 0, pos)) Exit(0)
If (!GetNumber("Cut how many characters [0-" + (fileID.GetFileSize()-pos) + "]", 0, amount)) Exit(0)
TXTFile_Remove(fileID, pos, amount)
CloseFile(fileID)

